
State space approach for stress decay in laminates

Yung-Ming Wang, Jiann-Quo Tarn*, Chung-Kung Hsu

Department of Civil Engineering, National Cheng Kung University, Tainan, Taiwan 70101, Republic of China

Received 14 January 1998; received in revised form 13 February 1999

Abstract

Stress decay in laminates due to edge boundary e�ects are studied through a state space formulation. A self-
equilibrium eigenstress ®eld accounting for the multilayer construction of the laminate is derived using the state
variables and the transfer matrix method. The eigenvalue determination requires only the solution of 6 � 6

determinants irrespective of the number of laminae. Through combinations of the eigenstress ®eld and the interior
stress ®eld a complete solution valid in the boundary layer as well as in the interior region of the laminate can be
obtained. For veri®cation, the formulation is ®rst applied to determining the eigenstress in a homogeneous
anisotropic layer, and then the free edge stress decay in laminates under uniform extension is examined. 7 2000

Elsevier Science Ltd. All rights reserved.

1. Introduction

Analysis of bending and stretching of plates is commonly based on a 2-D approximate theory in
which the through-thickness variation of the displacement is assumed so that the coordinate in the
thickness direction can be suppressed to derive the plate equations. Since the exact 3-D boundary
conditions along the edge surfaces can hardly be satis®ed within the framework of a 2-D plate theory, it
is a common practice to require instead the edge boundary conditions be satis®ed in their resultant
forms. As such, the exact edge boundary conditions through the thickness are replaced by the edge
conditions involving the midplane displacements, the stress resultants and stress moments. The solution
thus obtained is known to be invalid within the edge boundary zone where the stress state is inherently
3-D. As far as the interior solution is concerned, nonetheless, it is generally expected, by virtue of Saint-
Venant's principle, that the boundary layer e�ect will not be felt away from the local disturbance. The
assertion of course needs to be examined.

Examination of the applicability of Saint-Venant's principle and boundary layer e�ects in elastic
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strips and plates has received much attention (Toupin, 1965; Knowles, 1966; Choi and Horgan, 1977;

1978; Gregory and Wan, 1984; 1985; Crafter et al., 1993; Ting, 1996). It was found that the edge

e�ects in anisotropic strips may be far reaching and the stress disturbance may not be local. The

extent of the edge boundary layers depends on the geometry, the material property, the boundary

conditions, and the applied load. For laminates the lamination scheme also plays an important role.

To date numerous works on the subject have been published (see, e.g. Pagano,1974; Dong and

Goetshel, 1982; Kassapoglou and Lagace, 1987; Becker, 1993; and the references therein), ranging

from ®nite element solutions to analytic solutions based on various approximations and

simpli®cations.

In this paper we develop a state space approach for analysis of stress decay in laminates due to edge

e�ects. For simplicity, we limit considerations to rectangular laminates. The problem of stress

singularities is not considered. The state space formulation has been used extensively in the area of

optimal control (Derusso et al., 1965). Herein we employ the basic idea of state variables and transfer

matrix to develop a simple and direct approach for the problem. In formulating a state space approach

the ®rst step is to express the ®eld equations in the form of matrix di�erential equations in which the

unknowns are the state variable vectors. For problems of laminated plates, it is advantageous to take

the displacement and transverse stress components as the primary state variables because the continuity

conditions at the interfaces and the boundary conditions on the top and bottom surfaces are directly

associated with them. Under the assumption that the in-plane dimensions of the plate are large so that

the edge boundary layers are not interactive, we ®rst show that within the ®rst-order approximation it

su�ces to consider the boundary layer in a laminated strip. Guided by previous studies on

homogeneous strips (Toupin, 1965; Knowles, 1966; Choi and Horgan, 1977; Crafter et al., 1993), we

then seek an eigenstress ®eld that takes the form of exponential decay functions of the distance from the

edge. The smallest decay factor is a measure of the rate of stress attenuation. With the assumed stress

decay functions, the matrix di�erential equations for the state variables are reduced to a system of

ordinary di�erential equations in which the coordinate in the thickness direction is the only independent

variable. As a result, the state equations can be solved by means of matrix algebra (Frazer et al., 1960;

Pease, 1965). The interfacial continuity conditions and the traction-free lateral boundary conditions are

satis®ed using a transfer matrix that transmits the state variables from the bottom to the top layer. The

derivation produces a recursive relation that yields a self-equilibrium eigenstress ®eld for the laminate.

By combining the eigenstress ®eld with the interior stress ®eld that satis®es the prescribed boundary

conditions on the top and bottom surfaces, we are able to satisfy the edge boundary conditions through

the thickness for a speci®c problem and obtain a complete solution valid in the boundary layer as well

as in the interior. The interior stress ®eld can be determined in the usual way by the classical lamination

theory (Jones, 1975; Whitney, 1987) or by more re®ned theories (Wang and Tarn, 1994; Tarn et al.,

1996). Satisfaction of the edge boundary conditions through the thickness must resort to a numerical

method in general.

The state space approach combined with the transfer matrix method provides a simple and systematic

way for analysis of boundary layers in multilayered anisotropic laminates. Apart from being concise, the

approach is e�ective in that the eigenvalue determination requires only the solution of 6 � 6

determinants irrespective of the number of laminae. By contrast, if one follows the usual layerwise

approach, a very complicated 6n � 6n (n is the number of laminae) determinant for the eigenvalue will

result. The determinant involves the eigenvalue implicitly and often it is too large to solve, making the

determination of eigensolutions for laminates virtually impossible.

In the next section we present the state space formulation of the problem and construct a self-

equilibrium eigenstress ®eld for multilayered anisotropic laminates. We shall verify the formulation by

applying it to homogeneous layers in section 3. The eigensolutions derived herein fully agree with the
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known results. Finally, we shall use the approach to examine the edge stress decay in laminates
subjected to uniform extension.

2. State space formulation

2.1. Basic equations

We consider a rectangular laminated plate composed of n anisotropic laminae having at each point
one plane of elastic symmetry parallel to the midplane. The plate is subjected to (or free from)
transverse loads on the top and bottom surfaces. Appropriate edge conditions through the thickness are
prescribed on the edge boundary surfaces. The conditions are assumed to be uniform along the four
edges.

Let us select a Cartesian coordinate system such that the plane coincides with the bottom surface.
The stress-displacement relations for the laminae with respect to the laminate coordinates are
given by8>>>>>><>>>>>>:

s11
s22
s33
s23
s13
s12

9>>>>>>=>>>>>>;
k

�

26666664
c11 c12 c13 0 0 c16
c12 c22 c23 0 0 c26
c13 c23 c33 0 0 c36
0 0 0 c44 c45 0
0 0 0 c45 c55 0
c16 c26 c36 0 0 c66

37777775
k

8>>>>>><>>>>>>:

u1, 1
u2, 2
u3, 3
u2, 3 � u3, 2
u1, 3 � u3, 1
u1, 2 � u2, 1

9>>>>>>=>>>>>>;
k

, �1�

where sij are the stress components; ui are the displacement components, the commas denote
di�erentiation with respect to the su�x variables; cij are the 13 elastic constants of the material with one
plane of material symmetry; the subscript k indicates the kth lamina (k=1,2 . . . , n ).

The stresses in each lamina must satisfy the usual equilibrium equations in addition to the continuity
conditions between adjacent laminae at the interfaces:

�u1�k � �u1�k�1, �u2�k � �u2�k�1, �u3�k � �u3�k�1,

�s13�k � �s13�k�1, �s23�k � �s23�k�1, �s33�k � �s33�k�1: �2�
The boundary conditions on the top and bottom surfaces are

�s13�1 � �s23�1 � 0, �s33�1 � qÿ, at x3 � 0;

�s13�n � �s23�n � 0, �s33�n � q�, at x3 � h; �3�
where q2=0 if the top and bottom surfaces are free from the transverse loads.

The displacements and transverse stresses are taken to be the primary state variables in the state space
formulation. Upon eliminating the in-plane stresses using (1) and the equilibrium equations, we can
write the ®eld equations for the kth lamina in the form
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@

@x3

8>>>>>><>>>>>>:

u1
u2
u3
s13
s23
s33

9>>>>>>=>>>>>>;
k

�

26666664
0 0 ÿ@1 s55 s45 0
0 0 ÿ@ 2 s45 s44 0
d31 d32 0 0 0 cÿ133

d41 d42 0 0 0 d31
d42 d52 0 0 0 d32
0 0 0 ÿ@1 ÿ@2 0

37777775
k

8>>>>>><>>>>>>:

u1
u2
u3
s13
s23
s33

9>>>>>>=>>>>>>;
k

, �4�

where

d31 � ÿ�c13@1 � c36@2�cÿ133 , d32 � ÿ�c36@ 1 � c23@2�cÿ133 ,

d41 � ÿ�Q11@11 � 2Q16@12 �Q66@22�,

d42 � ÿ�Q16@11 � �Q12 �Q66�@12 �Q26@22�,

d52 � ÿ�Q66@11 � 2Q26@12 �Q22@22�, Qij � cij ÿ ci3cj3=c33,

�
s55 s45
s45 s44

�
�
�
c55 c45
c45 c44

�ÿ1
,

@1, @2, @12, . . . , denote partial derivatives with respect to x1, x2, x1 and x2, . . . , respectively.
The in-plane stresses expressed in terms of the primary state variables are given by8<:s11

s22
s12

9=;
k

�
24Q11@1 �Q16@2 Q16@1 �Q12@ 2 c13c

ÿ1
33

Q12@1 �Q26@2 Q26@1 �Q22@ 2 c23c
ÿ1
33

Q16@1 �Q66@2 Q66@1 �Q26@ 2 c36c
ÿ1
33

35
k

8<: u1
u2
s33

9=;
k

: �5�

Without loss of generality, we shall focus our attention on the boundary layer at the edge x1=0. To
facilitate subsequent analysis, we introduce the stretched coordinates de®ned by

x � x1=h, y � x2=l, z � x3=h, �6�

where l denotes the length of the plate in the x2 direction.
Upon substitution, Eqs. (4) and (5) become dimensionless as follows:

@

@z

8>>>>>><>>>>>>:

u1
u2
u3
s13
s23
s33

9>>>>>>=>>>>>>;
k

�

26666664
0 0 ÿ@x s55 s45 0
0 0 ÿE@y s45 s44 0
d31 d32 0 0 0 cÿ133

d41 d42 0 0 0 d31
d42 d42 0 0 0 d32
0 0 0 ÿ@x ÿE@y 0

37777775
k

8>>>>>><>>>>>>:

u1
u2
u3
s13
s23
s33

9>>>>>>=>>>>>>;
k

, �7�

8<:s11
s22
s12

9=;
k

�
24Q11@x � EQ16@y Q16@x � EQ12@y c13c

ÿ1
33

Q12@x � EQ26@y Q26@x � EQ22@y c23c
ÿ1
33

Q16@x � EQ66@y Q66@x � EQ26@y c36c
ÿ1
33

35
k

8<: u1
u2
s33

9=;
k

, �8�

where

d31 � ÿ�c13@x � Ec36@ y�cÿ133 , d32 � ÿ�c36@x � Ec23@y�cÿ133 ,
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d41 � ÿ�Q11@xx � 2EQ16@xy � E2Q66@yy�, d42 � ÿ�Q66@xx � 2EQ26@xy � E2Q22@yy�,

d52 � ÿ�Q16@xx � E�Q12 �Q66�@xy � E2Q26@yy�, Qij � cij ÿ ci3cj3=c33:

The derivatives with respect to y in (7) and (8) are associated with E(E=h/l < 1). As a ®rst-order
approximation, they can be neglected compared with the derivatives with respect to x. Thus Eqs. (7) and
(8) become

@

@z

8>>>>>><>>>>>>:

u1
u2
u3
s13
s23
s33

9>>>>>>=>>>>>>;
k

�

26666664
0 0 ÿ@x s55 s45 0
0 0 0 s45 s44 0
ÿc13cÿ133 @x ÿc36cÿ133 @x 0 0 0 cÿ133

ÿQ11@xx ÿQ16@xx 0 0 0 ÿc13cÿ133 @x
ÿQ16@xx ÿQ66@xx 0 0 0 ÿc36cÿ133 @x
0 0 0 ÿ@x 0 0

37777775
k

8>>>>>><>>>>>>:

u1
u2
u3
s13
s23
s33

9>>>>>>=>>>>>>;
k

, �9�

8<:s11
s22
s12

9=;
k

�
24Q11@x Q16@x c13c

ÿ1
33

Q12@x Q26@x c23c
ÿ1
33

Q16@x Q66@x c36c
ÿ1
33

35
k

8<: u1
u2
s33

9=;
k

: �10�

Eqs. (9) and (10) are in fact the equations for a laminated elastic strip in which the ®eld variables
depend only on x and z. Consequently, at the ®rst-order approximation, the problem in question is
reduced to the analysis of a laminated elastic strip.

2.2. Eigensolution

We now seek a solution to (9) in the form

�u1 u2 u3 s13 s23 s33�Tk � eÿlx�U V W t13 t23 t33�Tk , �11�
where the components of the state vector [U V W t13 t23 t33]

T are functions of z; l is a factor indicating
the decay rate from the edge boundary x1=0. The values of l can be determined through an eigenvalue
problem.

Substituting (11) in (9), we write the resulting ®rst-order ordinary di�erential equation system as

d

dz
Xk � lAkXk, �12�

where

Xk � �lU lV lW t13 t23 t33�Tk ,

Ak �

26666664
0 0 1 s55 s45 0
0 0 0 s45 s44
c13c

ÿ1
33 c36c

ÿ1
33 0 0 0 cÿ133

ÿQ11 ÿQ16 0 0 0 c13c
ÿ1
33

ÿQ16 ÿQ66 0 0 0 c36c
ÿ1
33

0 0 0 1 0 0

37777775
k

:

Eq. (10) becomes
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8<:s11
s22
s12

9=;
k

� eÿlx

24ÿQ11 ÿQ16 c13c
ÿ1
33

ÿQ12 ÿQ26 c23c
ÿ1
33

ÿQ16 ÿQ66 c36c
ÿ1
33

35
k

8<: lU
lV
t33

9=;
k

: �13�

Note that (12) and (13) have been arranged in such a way that the coe�cient matrices do not contain l.
The arrangement will make the eigenvalue determination much easier.

The solution of the matrix di�erential Eq. (12) (Frazer et al., 1960; Pease, 1965) takes the form

Xk�zk� � Tk�zk�Xk�0�, �14�

where 0 R zk R hk (hk=tk/h, tk denotes the thickness of the kth lamina); Tk (zk ) is the local transfer
matrix de®ned by

Tk�zk� � elAkzk : �15�

The relation between the local coordinate zk and the global coordinate z is

zk � zÿ
Xkÿ1
j�1

hj: �16�

The continuity conditions at the interfaces between the adjacent laminae require

Xk�1�0� � Xk�hk�: �17�

With (14) and (17), we have the recursive relation

Xk�1�zk� � Tk�1�zk�Tk�hk�Xk�0�: �18�

Carrying on the transformation from the bottom to the upper laminae using (18) and expressing the
result in the global coordinate z, we obtain

X�z� � T�z�X�0�, �19�

where the global transfer matrix is given by

T�z� �

8>>>><>>>>:
T�z�, 0RzRh1;
T2�zÿ h1�T1�h1�, h1RzRh1 � h2;
: :
: :
Tn�zÿ 1� hn�Tnÿ1�hnÿ1� . . . T2�h2�T1�h1�, 1ÿ hnRzR1:

�20�

At the top surface z=1, we have

X�1� � T�1�X�0�: �21�

Eq. (21) can be written as
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8>>>>>><>>>>>>:

lU
lV
lW
t13
t23
t33

9>>>>>>=>>>>>>;
z�1

�
�

Tuu Tus

Tsu Tss

�
z�1

8>>>>>><>>>>>>:

lU
lV
lW
t13
t23
t33

9>>>>>>=>>>>>>;
z�0

, �22�

where the transfer matrix has been partitioned such that8<: lU
lV
lW

9=;
z�1

� �Tuu�z�1

8<: lU
lV
lW

9=;
z�0

��Tus�z�1

8<: t13
t23
t33

9=;
z�0

, �23�

8<: t13
t23
t33

9=;
z�1

� �Tsu�z�1

8<: lU
lV
lW

9=;
z�0

��Tss�z�1

8<: t13
t23
t33

9=;
z�0

: �24�

The eigensolution is constructed by considering traction-free boundary conditions on the top and
bottom surfaces:8<: t13

t23
t33

9=;
z�1

�
8<: t13
t23
t33

9=;
z�0

� 0: �25�

Substituting (25) in (24) gives

�Tsu�z�1

8<: lU
lV
lW

9=;
z�0

� 0: �26�

Non-trivial solutions of (26) exist if and only if the determinant of [Tsu]z = 1 vanishes,

j Tsu jz�1� 0: �27�
The solution of the characteristic Eq. (27) yields the decay factor l. After determining l, the eigenstress
that satis®es the interfacial continuity conditions and the traction-free boundary conditions on the top
and bottom surfaces is obtained from (19).

The transfer matrix given by (15) is a formal expression involving an exponential function of matrices.
To use it in determining the eigensolution, we have to express (15) in an operational form. When the
eigenvalues of Ak are distinct, it can be shown (Frazer et al., 1960; Pease, 1965), by making use of the
Jordan canonical form, that the function of matrices can be expressed as

Tk�z� � elAkz � MhelmziMÿ1, �28�
where h � � � i denotes a diagonal matrix consisting of the six eigenvalues associated with the matrix Ak;
M is the matrix whose columns are the corresponding eigenvectors of Ak. When repeated eigenvalues of
occur, functions of matrices can be evaluated using a more general method (Frazer et al., 1960; Pease,
1965).

Determination of the eigenvalues of Ak requires the solution of a determinant. For the laminate, the
eigenvalues are determined for each lamina in turn, and the transfer matrix de®ned by (20) is used for
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evaluating the decay factor. In the computation, we need to deal with only 6� 6 determinants, one at a
time irrespective of the number of laminae. The computation is further eased by the fact that the
determinant depends only on the elastic moduli of the material, not on the decay factor l. By contrast,
if the usual layerwise approach is used, the governing equations for each lamina must be solved ®rst,
and then the interfacial continuity and lateral boundary conditions are imposed on the solution for the
unknown coe�cients. The approach will inevitably lead to a 6n � 6n determinant for the eigenvalues.
Not only is the determinant often too large to solve but it involves the decay factor implicitly, making it
very di�cult to treat the problem for multilayered laminates this way.

3. Eigenstress in a homogeneous layer

Before applying the state space formulation to multilayered laminates, we ®rst apply it to problems of
homogeneous strips. The eigensolution derived herein can be checked against the known results for
isotropic and anisotropic elastic strips (Timoshenko and Goodier, 1970; Ting, 1996). In what follows we
shall drop the subscript k for clarity.

For a homogeneous layer the eigenvalues and eigenvectors of A are derived from

AX � mx: �29�
Non-trivial solution of (29) exists if������������

ÿm 0 1 s55 s45 0
0 ÿm 0 s45 s44 0
c13c

ÿ1
33 c36c

ÿ1
33 ÿm 0 0 cÿ133

ÿQ11 ÿQ16 0 ÿm 0 c13c
ÿ1
33

ÿQ16 ÿQ66 0 0 ÿm c36c
ÿ1
33

0 0 0 1 0 ÿm

������������
� 0: �30�

This gives the characteristic equation for the eigenvalues m of monoclinic materials:

m6 � �s44Q66 � s55Q11 ÿ 2c13c
ÿ1
33 �m4 � ��s44s55 ÿ s245��Q11Q66 ÿQ2

16� � 2s44�c36Q16 ÿ c13Q66�cÿ133

� 2s45�c36Q11 ÿ c13Q16�cÿ133 � c213c
ÿ2
33 �Q11c

ÿ1
33 �m2 � s44�c236cÿ233 Q11 � c213c

ÿ2
33 Q66 ÿ 2c13c16c36c

ÿ2
33

� �Q11Q66 ÿQ2
16�cÿ133 � � 0:

�31�

For orthotropic materials (c16=c26=c36=s45=Q16=0), Eq. (31) becomes

�m2 � c66c
ÿ1
44 �fm4 � �c11cÿ155 ÿ �2� c13c

ÿ1
55 �c13cÿ133 �m2 � c11c

ÿ1
33 g � 0: �32�

For isotropic materials, the equation is further reduced to

�m2 � 1�3 � 0: �33�
After solving the algebraic equations for the eigenvalues, we can easily obtain the corresponding
eigenvectors from (29). According to (28), determination of the transfer matrix requires an inverse of the
matrix of the eigenvectors. The inverse, of course, can be determined numerically for a given material,
leading to numerical results for the stress decay factor. Nonetheless, we shall derive the analytic form of
the stress decay factor using certain orthogonality properties for the eigenvalue problem.
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The matrix A can be written as

A �
�

N1 N2

N3 NT
1

�
, �34�

in which

N1 �
24 0 0 1
0 0 0
c13c

ÿ1
33 c36c

ÿ1
33 0

35,

N2 �
24 s55 s45 0
s45 s44 0
0 0 cÿ133

35,

N3 �
24ÿQ11 ÿQ16 0
ÿQ16 ÿQ66 0
0 0 0

35,
N2 and N3 are symmetric matrix.

The roots of (31) are three pairs of complex conjugate. Suppose that all the roots are distinct, we can
represent the matrix M as

M �
�

B ÅB
C ÅC

�
, �35�

where B=[b1 b2 b3], C=[c1 c2 c3], B
-

and C
-

are their complex conjugates. Henceforth, an over bar
denotes the complex conjugate.

The components of B and C are the right and left eigenvectors associated with the eigenvalues mi (i=
1, 2, . . . , 6). They are determined from

AXi � miXi and YT
i A � miY

T
i �36�

such that

Xi �
�

bi

ci

�
, Yi �

�
ci
bi

�
:

It can be shown by using the orthogonality property of the right and left eigenvectors (Ting, 1996) that
the inverse of M is given by

Mÿ1 �
�

CT BT

ÅC
T ÅB

T

�
: �37�

Upon substituting (35) and (37) in (28) for the transfer matrix, we obtain

Tsu � ChelmziCT � ÅChel �mzi ÅCT
: �38�

Eq. (38) can be manipulated to a simpler form using the closure relation for the components of M and
Mÿ1:
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CCT � ÅC ÅC
T � 0, �39�

then

CT� ÅCT�ÿ1 � ÿCÿ1 ÅC: �40�

Thus we have

Tsu � C�helmziCT� ÅCT�ÿ1 � Cÿ1 ÅChel �mzi� ÅCT � ÿC�helmziCÿ1 ÅCÿ Cÿ1 ÅChel �mzi� ÅCT
: �41�

The condition (27) requires that

j helmiCÿ1 ÅCÿ Cÿ1 ÅChel �mi j� 0: �42�

From (42) the stress decay factor l can be determined once the eigenvalues and eigenvectors of A are
obtained.

Consider a single layer of orthotropic materials for example. The characteristics equations of A is
given by (32) which can easily be solved to yield the six eigenvalues. The eigenvectors associated with
the eigenvalues m1,2=2i(c66/c44)

1/2 are the antiplane mode of which the only non-zero components are�
b
c

�
�
�
�13i ��c66c44�ÿ1=4=2
�12i ��c66c44�1=4=2

�
: �43�

Thus

M �
�
�1ÿ i ��c66c44�ÿ1=4=2 �1� i ��c66c44�ÿ1=4=2
�1� i ��c66c44�1=4=2 �1ÿ i ��c66c44�1=4=2

�
, �44�

Mÿ1 �
�
�1� i ��c66c44�1=4=2 �1ÿ i ��c66c44�ÿ1=4=2
�1ÿ i ��c66c44�1=4=2 �1� i ��c66c44�ÿ1=4=2

�
: �45�

Substituting (44) and (45) in (28), we obtain the transfer matrix

T�z� �
�

cos�alz� sin�alz�=a
ÿa sin�alz� cos�alz�

�
, �46�

where a=(c66/c44)
1/2.

The condition (27) demands

j a sin�al� j� 0 �47�

from which we obtain the stress decay factor for the antiplane mode:

l � np=a � np�c44=c66�1=2, �n � 1, 2, . . .� �48�

and the corresponding eigenstate

�V t23� � � cos�alz�=l ÿ a sin�alz��: �49�

Next, we consider the other eigenvalues determined from (32). Let us denote the four roots of
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m4 � �c11cÿ155 ÿ �2� c13c
ÿ1
55 �c13cÿ133 �m2 � c11c

ÿ1
33 � 0 �50�

by m1, m2, �m1, �m2:
The eigenvectors associated with these eigenvalues are the in-plane mode, and

M �
�

B ÅB
C ÅC

�
�

26664
r1=k1 r2=k2 �r1= �k1 �r2= �k2
s1=k1 s2=k2 �s1= �k1 �s2= �k2
m1=k1 m2=k2 �m1= �k1 �m2= �k2
1=k1 1=k2 1= �k1 1= �k2

37775, �51�

Mÿ1 �
�

CT BT

ÅC
T ÅB

T

�
�

2664
m1=k1 1=k1 r1=k1 s1=k1
m2=k2 1=k2 r2=k2 s2=k2
�m1= �k1 1= �k1 �r1= �k1 �s1= �k1
�m2= �k2 1= �k2 �r2= �k2 �s2= �k2

3775, �52�

where

ri � �c13 � c55�m2i =�c55�c13m2i ÿ c11��,

si � �c55m2i � c11�mi=�c55�c13m2i ÿ c11��,

ki � f2�c13 � 2c55�m2i � c11�mi=�c55�c13m2i ÿ c11��g1=2 � �2�rimi � si ��1=2:
The condition (27) results in���� � �m1 ÿ m2��elm1 ÿ el �m1 � � �m2 ÿ m2��elm1 ÿ el �m2 �

�m1 ÿ �m1��elm2 ÿ el �m1 � �m1 ÿ �m2��elm2 ÿ el �m2 �
���� � 0: �53�

The determinant yields

�a2 � b2� sin 2 l̂ � �1� a2� sin�l̂b� � �1ÿ b2� sinh 2�l̂a�, �54�
where

l̂ � l�q1 � q2�=2,

a � � p1 ÿ p2�=�q1 � q2�,

b � �q1 ÿ q2�=�q1 � q2�,
pi and qi are the real and imaginary parts of the complex root mi.

Apart from notational di�erences, Eq. (54) is precisely the characteristic equation for the decay factor
of the in-plane mode given in Ting (1996). The existing solution (Wang, et al., 1993; Ting, 1996) was
derived based on the Stroh formalism for an anisotropic elastic strip.

The above derivations assume that the matrix A is simple or semisimple (Pease, 1965; Ting, 1996)
such that there exist six independent eigenvectors. For isotropic materials, the matrix A is non-
semisimple. The roots of (33) are m= 2 i of multiplicity three. By setting c44=c66 in (48), we
immediately obtain the stress decay factor for the antiplane mode
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l � np, �n � 1, 2 . . .�: �55�
The stress decay factor of the in-plane mode can be obtained by letting m1=i and m2=(1+E )i (E4 0) in
(54) and taking the limit. As a result of the limiting process, we obtain the following equation for l:

sin l2l � 0: �56�
The characteristic Eq. (56) is the same as that obtained according to the stress function formulation for
plane problems of elasticity (Timoshenko and Goodier, 1970). The analysis shows that the present
formulation when applied to special cases yields results in full agreement with the known results.

4. Laminates under uniform extension

We now consider the edge e�ect of cross-ply laminates subjected to uniform tension in the x2
direction. The laminate is composed of orthotropic laminae with midplane symmetry. The stress
disturbance near the free edge x1=0 is examined.

According to the classical lamination theory (CLT) (Jones, 1975; Whitney, 1987), uniform extension
of a midplane symmetric laminate causes in-plane stresses:8<:s11

s22
s12

9=;
k

�
24Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

35
k

24A11 A12 A16

A12 A22 A26

A16 A26 A66

35ÿ18<: 0
N
0

9=;, �57�

�s13 s23 s33�k � 0, �58�
where

Aij �
Xn
k�1
�Qij �ktk:

The free-edge boundary conditions require s11=s12=s13=0 at x1=0, whereas the stress distribution
based on CLT was obtained using the relaxed conditions such that the stress resultants across the
thickness vanish at the free edge. Thus the free-edge boundary conditions are satis®ed only in an
average sense, and the stress state given by (57) and (58) is invalid in the boundary layer zone.

Let us denote the eigenstate derived by Fs
i and Fu

i , and the stress and displacement in the interior
region by s I and uI. The linear combination of the interior stress state and the eigenstress state can be
expressed as

s � sI �
X
i

ciFs
i , u � uI �

X
i

ciFu
i : �59�

Obviously, the combined stress and displacement ®elds satisfy the equilibrium, the compatibility, the
interfacial continuity conditions, and the boundary conditions on the top and bottom surfaces of the
laminate. It remains to determine the unknown coe�cients ci in (59) such that the free-edge boundary
conditions through the thickness are satis®ed.

In determining the coe�cients ci, it would be possible to impose the free-edge conditions directly on
(59) and use a numerical scheme such as the method of the least square error to ®nd the values of ci.
We propose instead to determine ci through the principle of virtual work. With a statically admissible
elastic ®eld in the laminate where only the edge boundary conditions are not satis®ed, the virtual work
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equation is

�h
0

�
G
�sijnj ÿ pi �dui dG dx3 � 0, �60�

where ni is the outward normal to the edge contour G, pi is the traction on the edge boundary. For
traction-free edge boundary conditions, pi=0.

Substituting (59) in (60), we have

Xn
i�1

ci

�1
0

�Fs
i n�TFu

j dz�
�1
0

�sIn�TFu
j dz � 0, � j � 1, 2, . . . , n� �61�

where n denotes the outward normal to the edge contour.
Eq. (61) is a system of linear algebraic equations in which ci are the unknowns. The equations can be

easily solved using a numerical method. Upon determining the coe�cients ci, we obtain a complete
solution valid in the edge boundary zone as well as in the interior region of the laminate.

To check the validity of the eigensolution, we ®rst applied the present approach to four-ply cross-ply
laminates, for which numerical results on the characteristic decay length were obtained by Dong and
Goetschel (1982) using a semianalytical method with ®nite element interpolations over the thickness.
The elastic constants for the lamina are c11=21.289 � 106 psi, c22=c33=2.319 � 106 psi, c44=c55=0.85
� 106 psi, c23=5.005� 106 psi, c12=c13=0.592� 106 psi. In their ®nite element model 40 equal thickness
elements with 81 nodal surfaces and 162 degrees of freedom were used. Numerical results on the
eigenvalues and eigenmodes for two cross-ply laminates with stacking sequences of [0/90/0/90] and [0/90/
90/0] lay-up were reported. The comparisons of the lowest 20 eigenvalues ln for the two laminates, as
determined via the state space approach with the numerical results reported in Dong and Goetschel
(1982) were given in Table 1 and 2. The results are in good agreement. The eigenmodes for the [0/90/90/
0] laminate may be identi®ed as symmetric and antisymmetric about the middle plane. The lowest
eigenvalue gives a measure of the stress decay rate. The real part of the lowest eigenvalue is 2.672 for
the [0/90/90/0] laminate and 2.3713 for the [0/90/0/90] laminate, as compared with the known value of

Table 1

Decay rate ln for a [0/90/90/0] laminate

Symmetric mode Anti-symmetric mode

Present Dong and Goetschel (1982) Present Dong and Goetschel (1982)

Mode Re[ln] Im[ln] Re[ln] Im[ln] Re[ln] Im[ln] Re[ln] Im[ln]

1 2.6720 0.0000 2.6720 0.0000 2.6734 0.0000 2.6734 0.0000

2 4.4345 0.0000 4.4350 0.0000 5.0527 0.0000 5.0532 0.0000

3 4.6616 0.8087 4.6617 0.8085 8.0073 0.0000 8.0132 0.0000

4 4.6616 ÿ0.8087 4.6617 ÿ0.8085 9.1794 1.5306 9.1784 1.5292

5 7.8942 0.0000 7.8981 0.0000 9.1794 ÿ1.5306 9.1784 ÿ1.5292
6 10.2012 0.0000 10.2160 0.0000 10.0678 0.0000 10.0859 0.0000

7 13.5467 0.0000 13.6429 0.0000 13.1249 0.0000 13.1716 0.0000

8 13.9886 1.3853 13.9674 1.3830 15.3849 0.0000 15.4914 0.0000

9 13.9886 ÿ1.3853 13.9674 ÿ1.3830 17.9128 1.1077 17.9880 1.1409

10 15.3395 0.0000 15.4637 0.0000 17.9128 ÿ1.1077 17.9880 ÿ1.1409
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Table 2

Decay rate ln for a [0/90/0/90] laminate

Present Dong and Goetschel (1982)

Mode Re[ln] Im[ln] Re[ln] Im[ln]

1 2.3713 0.0000 2.3713 0.0000

2 2.6933 0.0000 2.6933 0.0000

3 4.1402 0.0000 4.1404 0.0000

4 5.0165 0.0000 5.0169 0.0000

5 5.0597 1.0254 5.0598 1.0254

6 5.0597 ÿ1.0254 5.0598 ÿ1.0254
7 7.1784 0.0000 7.1810 0.0000

8 7.8031 0.0000 7.8070 0.0000

9 8.8630 0.0000 8.8684 0.0000

10 10.2268 0.0000 10.2423 0.0000

11 10.9951 1.7760 10.9986 1.7795

12 10.9951 ÿ1.7760 10.9986 ÿ1.7795
13 12.6906 0.0000 12.7373 0.0000

14 12.9096 0.0000 12.9580 0.0000

15 13.0324 2.5474 13.0261 2.5468

16 13.0324 ÿ2.5474 13.0261 ÿ2.5468
17 14.9695 0.0000 15.0750 0.0000

18 15.4383 0.0000 15.5499 0.0000

19 17.9235 0.8710 17.9740 0.9408

20 17.9235 ÿ0.8710 17.9740 ÿ0.9408

Fig. 1. Comparisons of the interlaminar normal stress for a [0/90]s laminate under extension.
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4.212 for isotropic materials, indicating that the stress decay is slower in the laminate than in an
isotropic material.

Next, we computed the results using another set of data for a [0/90]s laminate, for which the results
based on various approximate solutions (Pagano,1974; Kassapoglou and Lagace, 1987; Becker, 1993)
are available for comparisons. The elastic constants for the lamina are c11=c33=15,300 N/mm2,
c22=140,000 N/mm2, c44=c55=5900 N/mm2, c12=c23=3900 N/mm2, c13=3300 N/mm2. The numerical
results for the lowest forty eigenvalues are listed in Table 3. Again, the eigenvalues may be identi®ed as

Table 3

Decay rate ln for a [0/90]s laminate

Symmetric mode Anti-symmetric mode

Mode Re[ln] Im[ln] Re[ln] Im[ln]

1 2.4047 0.0000 2.8255 0.0000

2 4.8382 1.3184 4.5541 0.0000

3 4.8382 ÿ1.3184 6.8598 0.0000

4 5.0570 0.0000 9.4984 0.0000

5 7.9168 0.0000 11.1400 3.0460

6 10.5279 0.0000 11.1400 ÿ3.0460
7 13.2253 0.0000 12.3833 0.0000

8 12.9979 4.0733 15.1680 0.0000

9 12.9979 ÿ4.0733 17.3198 1.0840

10 15.9337 0.0000 17.3198 ÿ1.0840
11 18.5857 0.0000 19.5944 0.0000

12 21.2594 0.0000 22.3651 0.0000

13 24.0235 0.0000 25.0737 0.0000

14 24.1721 5.6237 27.7725 0.0000

15 24.1721 ÿ5.6237 30.4495 0.0000

16 27.1007 0.0000 33.1446 0.0000

17 28.5040 0.9782 35.9655 0.0000

18 28.5040 ÿ0.9782 38.6005 1.1595

19 31.5260 0.0000 38.6005 ÿ1.1595
20 34.2659 0.0000 40.5771 0.0000

21 36.9633 0.0000 43.4662 0.0000

22 37.3105 7.4102 46.1719 0.0000

23 37.3105 ÿ7.4102 48.8610 0.0000

24 39.6563 0.0000 51.5551 0.0000

25 42.3446 0.0000 54.2617 0.0000

26 45.0738 0.0000 57.1002 0.0000

27 48.6610 0.0000 59.1921 1.0403

28 48.9609 0.6276 59.1921 ÿ1.0403
29 48.9609 ÿ0.6276 61.7777 0.0000

30 52.6382 0.0000 64.5859 0.0000

31 55.3861 0.0000 67.2943 0.0000

32 58.0752 0.0000 69.9763 0.0000

33 60.7622 0.0000 72.6676 0.0000

34 63.4663 0.0000 74.9275 7.7736

35 66.2189 0.0000 74.9275 ÿ7.7736
36 69.2062 0.8647 75.3988 0.0000

37 69.2062 ÿ0.8647 78.3376 0.0000

38 70.8249 0.0000 80.0243 0.9013

39 73.7720 0.0000 80.0243 ÿ0.9013
40 75.3863 7.8345 82.9475 0.0000
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symmetric and antisymmetric modes about the middle plane. The real part of the lowest eigenvalue is
2.405 compared with the known value of 4.212 for isotropic materials. Fig. 1 shows the comparison of
the interlaminar normal stress at the 0/90-interface with the published results. The results obtained by
Becker (1993) using an assumed displacement model with a particular warp deformation mode are
relatively close to the present results. In Figs. 2 and 3, we further compare the distributions of the
interlaminar normal stress s3/E0 and shear stress s13/E0 (E0 being the uniform strain in the x2 direction)
at the 0/90-interface away from the free edge. The results by taking 20, 40, and 60 terms in the
eigenfunction expansions are also presented to show the convergence. It is found that satisfactory

Fig. 2. Interlaminar normal stress s3/E0 at the 0/90-interface.

Fig. 3. Interlaminar shear stress s13/E0 at the 0/90-interface.
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convergence is reached except in a very narrow region (x1 < 0.1 h ) near the free edge. While the
present results and Becker's results are in reasonable agreement in the region x1 > 0.25 h, marked
discrepancies exist within x1 < 0.25 h. According to CLT the normal stress s3 and shear stress s13
vanish everywhere in symmetric laminates under extension, but Figs. 2 and 3 show that these stresses
approach to zero only for x1 > 1.5 h, suggesting that stress disturbance occurs near the free edge. The

Fig. 4. In-plane stress s1/E0 at the middle surface of the laminate.

Fig. 5. In-plane stress s1/E0 at the middle surface of the 0-layer.
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boundary layer zone in this case is localized to the region of a distance 1.5 h from the edge. Figs. 4 and
5 show the in-plane stress distribution s1/E0 at the middle surface of the laminate and at the middle
surface of the 0-layer, respectively. The stress s1/E0 approaches to a constant value at about x1 > 1.5 h.
The traction-free edge condition requires s1/E0 be zero at x1=0. The condition is satis®ed as the
expansion terms increase. The stress near the free edge shows numerical oscillations which are common
to solutions obtained via eigenfunction expansions involving complex eigenvalues. In Figs. 2 and 3 the
computed values of interlaminar stresses, as x1 4 0, grow with the terms taken in the expansion. The
free-edge normal and shear stresses at the 0/90 interfaces are not vanishing due to stress singularities. It
should be noted that the exact nature of the singularity cannot be determined numerically in the present
context since the singular behavior at the free edge interfaces was not considered in the analysis.
Applications of the state space approach and transfer matrix in studying the stress singularities in
multilayered laminates requires a continuing study.

Acknowledgements

We thank the support from the National Science Council of Republic of China through grants
NSC87-2211-E006-051 and NSC87-2211-E006-065.

References

Becker, W., 1993. Closed-form solution for the free-edge e�ect in cross-ply laminates. Composite Structures 26, 39±45.

Choi, I., Horgan, C.O., 1977. Saint-Venant's principle and end e�ects in anisotropic elasticity. ASME Journal of Applied

Mechanics 44, 424±430.

Choi, I., Horgan, C.O., 1978. Saint-Venant's end e�ects for plane deformation of sandwich strips. International Journal of Solids

and Structures 14, 187±195.

Crafter, E.C., Heise, R.M., Horgan, C.O., Simmonds, J.G., 1993. The eigenvalues for a self-equilibrated, semi-in®nite, anisotropic

elastic strip. ASME Journal of Applied Mechanics 60, 276±281.

Derusso, P.M., Roy, R.J., Close, C.M., 1965. State Variables for Engineers. Wiley, New York.

Dong, S.B., Goetschel, D.B., 1982. Edge e�ects in laminated composite plates. ASME Journal of Applied Mechanics 49, 129±135.

Frazer, R.A., Duncan, W.J., Colar, A.R., 1960. Elementary Matrices and Some Applications to Dynamics and Di�erential

Equations. Cambridge University Press, Cambridge.

Gregory, R.D., Wan, F.Y.M., 1984. Decaying states of plane strain in a semi-in®nite strip and boundary conditions for plate

theory. Journal of Elasticity 14, 27±64.

Gregory, R.D., Wan, F.Y.M., 1985. On plate theories and Saint-Venant's principle. International Journal of Solids and Structures

21, 1005±1024.

Jones, R.M., 1975. Mechanics of Composite Materials. McGraw-Hill, New York.

Kassapoglou, C., Lagace, P.A., 1987. Closed form solutions for the interlaminar stress ®eld in angle-ply and cross-ply laminates.

Journal of Composite Materials 21, 292±308.

Knowles, J.K., 1966. On Saint-Venant's principle in two dimensional linear theory of elasticity. Archive of Rational Mechanical

Analysis 21, 1±22.

Pagano, N.J., 1974. On the calculation of interlaminar normal stress in composite laminate. Journal of Composite Materials 8, 65±

82.

Pease, M.C., 1965. Methods of Matrix Algebra. Academic Press, New York.

Tarn, J.Q., Wang, Y.B., Wang, Y.M., 1996. Three-dimensional asymptotic ®nite element method for anisotropic inhomogeneous

and laminated plates. International Journal of Solids and Structures 33, 1939±1960.

Timoshenko, S.P., Goodier, J.N., 1970. Theory of Elasticity, 3rd ed. McGraw-Hill, New York.

Ting, T.C.T., 1996. Anisotropic Elasticity, Theory and Applications. Oxford University Press, Oxford.

Toupin, R.A., 1965. Saint-Venant's principle. Archive of Rational Mechanical Analysis 18, 83±96.

Wang, M.Z., Ting, T.C.T., Yan, G., 1993. The anisotropic elastic semi-in®nite strip. Quarterly of Applied Mathematics 51, 283±

297.

Y. Wang et al. / International Journal of Solids and Structures 37 (2000) 3535±35533552



Wang, Y.M., Tarn, J.Q., 1994. A three-dimensional analysis of anisotropic inhomogeneous and laminated plates. International

Journal of Solids and Structures 31, 497±515.

Whitney, J.M., 1987. Structural Analysis of Laminated Anisotropic Plates. Technomic, Lancaster, PA.

Y. Wang et al. / International Journal of Solids and Structures 37 (2000) 3535±3553 3553


